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Relaxation dynamics in a Hubbard dimer coupled to fermionic baths: Phenomenological
description and its microscopic foundation
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We study relaxation dynamics in a strongly interacting two-site Fermi-Hubbard model that is induced by
coupling each site to a local fermionic bath. To derive the proper form of the Lindblad operators that enter an
effective description of the system-bath coupling in different temperature regimes, we employ a diagrammatic
real-time technique for the time evolution of the reduced density matrix. In spite of a local coupling to the
baths, the found Lindblad operators are nonlocal in space. We compare with the local approximation, where
those nonlocal effects are neglected. Furthermore, we propose an improvement on the commonly used secular
approximation (rotating-wave approximation), referred to as coherent approximation, which turns out superior
in all studied parameter regimes (and equivalent otherwise). We look at the relaxation dynamics for several
important observables and compare the methods for early and late times in various temperature regimes.
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I. INTRODUCTION

The description of nonequilibrium dynamics of strongly
interacting many-body systems is a challenging task. This
is already true for closed quantum systems that undergo a
unitary time evolution [1–26]. It is even more true for the
more realistic scenario of a quantum system coupled to an
environment [27–31]. The type of coupling, e.g., whether it
allows for exchange of energy and/or spin and/or particles,
does not only modify the internal quantum dynamics of the
system; in many cases it will even dominate the system’s
behavior.

Dynamics of open quantum systems coupled to Markovian
baths are generically described by master equations in Lind-
blad form [32–36]. A common approach is to incorporate the
effects of the coupling to the environment in the so-called
Lindblad operators on phenomenological grounds [37]. They
are introduced ad hoc, based on physical intuition. This may
work well in some situations but may encounter ambiguities in
other cases, in particular for interacting many-body systems.

To obtain a microscopic description of the coupling to
the environment one can introduce external baths and their
coupling to the system on the Hamiltonian level. Integrating
out the baths yields an effective description of the system’s
degrees of freedoms in terms of a reduced density matrix.
As an advantage, the microscopic approach does not involve
any guessing. The disadvantage, on the other hand, lies in the
increasing complexity of the calculations with increasing size
of the many-body quantum system.
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The described dichotomy between phenomenological and
microscopic approaches suggests to combine the best of the
two worlds. As a first step along such an endeavor, we analyze,
in the present paper, the Fermi-Hubbard model where each
site is coupled separately to its own thermal fermionic bath.
For a small model system with only a few interacting degrees
of freedom, a full microscopic treatment is feasible. To be
specific, we choose as a system a Hubbard dimer [38] and
assume that each of the two sites is weakly coupled to a
thermal fermionic bath, i.e., electrons can enter from or leave
to the bath.

The first goal of the paper is to intertwine two different
theoretical approaches to study nonequilibrium dynamics in
the Fermi-Hubbard model coupled to thermal baths: On the
one hand, in Sec. II, we use a phenomenological method
where for the limiting cases of cold T → 0 and hot T → ∞
baths the Lindblad operators are deduced from physical intu-
ition. On the other hand, in Sec. III, we formulate the kinetic
equations of the system within a real-time technique in which
relaxation processes are represented in terms of diagrams.
Then, in Sec. IV, we derive for a single site the Lindblad
operators from the respective diagrams in the Markovian limit
for the leading-order perturbation theory in the system-bath
coupling. To overcome the problem of nonpositivity, we intro-
duce an alternative (referred to as coherent approximation) to
the commonly used secular approximation. Then, we extend
the procedure to systems with more than one site, and we
illustrate that the derived Lindblad operators become effec-
tively nonlocal in space. Only by neglecting those nonlocal
effects we find (for the coherent approximation) an agree-
ment with the phenomenological model. Thus, if nonlocality
becomes important, the phenomenological approach fails. To
illustrate our findings, we study, in Sec. V, a model system
that can be treated fully analytically, namely, a Hubbard
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dimer coupled to fermionic baths. We compare the various
approximations for the limiting cases of a hot and a cold
bath by studying the relaxation dynamics for several important
observables. At last, for small but finite temperatures, we
find an additional timescale responsible for the ultraslow
decay of singlet-triplet-like spin oscillations. The emergence
of different timescales has also been observed in various other
systems due to relaxation or thermalization processes [39–46].

II. LINDBLAD MASTER EQUATION

The Fermi-Hubbard model is described by the
Hamiltonian [47]

Hs = −J
∑

〈m,m′〉,σ
c†m,σ cm′,σ + U

∑
m

nm,↓nm,↑ + ε
∑
m,σ

nm,σ ,

(1)
with c†m,σ , cm,σ , and nm,σ being the creation, annihilation, and
occupation-number operators for an electron with spin σ at
site m, respectively. The first term describes tunneling be-
tween nearest neighbors 〈m, m′〉 with amplitude J , the second
term describes the on-site Coulomb interaction of strength
U , and ε is the single-electron energy. To study relaxation
dynamics, we couple the system to external baths and describe
the system by the density matrix ρ(t ). In a generic form,
the time evolution is expressed as ρ(t ) = �(t, t0)ρ(t0) with
�(t, t0) being a dynamical map propagating the reduced den-
sity matrix forward in time. By imposing Markovian dynam-
ics in the form of a semigroup assumption for the propagator,
�(t, t ′)�(t ′, t0) = �(t, t0) with t0 < t ′ < t , it can be shown
that the dynamics of ρ(t ) are described by a Lindblad equation
[32,33] ρ̇ = Lρ of the form

ρ̇ = − i

h̄
[H̃s, ρ] +

N2−1∑
μ,ν=1

γμν

(
Eμ ρ E†

ν − 1

2
{E†

ν Eμ, ρ}
)

, (2)

where the solution can formally be given as �(t, t0) =
eL(t−t0 ). The generator L of the semigroup is called the
Liouville superoperator or simply Liouvillian. In Eq. (2), Eμ

with μ = 1, . . . , N2−1 span a basis for the operators defined
in the system’s Hilbert space of dimension N . We choose
EN2 ∝ 1 (which has no effect for the time evolution), leaving
N2 − 1 independent operators Eμ. The (N2 − 1)-dimensional
matrix γμν describing the coupling to the baths is Hermi-
tian and positive semidefinite. Then, per construction, the
Lindblad equation preserves the trace trρ(t ) = 1, Hermiticity
ρ(t )† = ρ(t ), and positivity ρ(t ) � 0, all properties which are
essential for a physical interpretation of the density matrix
ρ(t ). Note that, in general, we have H̃s 
= Hs, i.e., a modified
coherent evolution due to renormalization effects induced by
the baths. Using that γμν = γ ∗

νμ is Hermitian, we diagonalize
the Lindblad equation arriving at

ρ̇ = −i [H̃s, ρ] +
N2−1∑
k=1

γk

(
Lk ρ L†

k − 1

2
{L†

k Lk, ρ}
)

, (3)

with (from now on) natural units h̄ = 1. In Eq. (3), Lk with
k = 1, ..., N2−1 are referred to as Lindblad operators de-
scribing the interaction with the environment (e.g., gain and
loss terms). This diagonal Lindblad form will be the starting
point of the phenomenological description of the Hubbard

FIG. 1. Single site coupled to a hot (red), cold (blue), and finite-
temperature (gray) bath. Electron-electron interaction U gives rise to
two excitation energies ε and ε + U .

system coupled to thermal baths. Here, without knowing the
microscopic details of the environment, we incorporate the
Lindblad operators Lk and the coupling parameters γk � 0
solely from the system’s perspective in such a way that they
model the desired effects.

In this paper, we study a situation where every site m is
coupled individually to its own bath (one site is shown in
Fig. 1). The baths are assumed to be identical, i.e., they have
the same temperature T and the same Fermi energy εF. In
the phenomenological model, we assume that given a local
coupling the Lindblad operators for each site m depend only
on locally defined operators. Specifically, the Hilbert-space di-
mension of one site is N = 4 and, therefore, the local Lindblad
operators are constructed from 16 linear independent opera-
tors. Half of them, namely, {1, c↑c↓, c†↑c†↓, c†σ cσ̄ , nσ , n↑n↓}m,
where σ̄ denotes the opposite spin to σ , contain an even num-
ber of Fermi operators. The other half, {cσ , c†σ , cσ nσ̄ , c†σ nσ̄ }m,
contains an odd number of Fermi operators. The Lindblad
operators constructed from the second class change the
fermion parity number Pm = (−1)nm with the local occupation
number nm = ∑

σ nm,σ on site m. Therefore, we refer to a
bath described by these Lindblad operators as a fermionic
bath. In contrast, the Lindblad operators of the first class
leave the fermion parity number unchanged, describing a
bosonic bath. (Note that the terms bosonic and fermionic
do not necessarily refer to the actual nature of the particles
involved in the physical bath.) In general, both types of baths
can exchange charge, spin, and energy with the system and
thus relaxation and decoherence dynamics can be studied.
In Ref. [37], bosonic baths with the Lindblad operators nm,σ

have been considered. Here, we investigate fermionic baths
only. Considering separate channels where single electrons
of spin σ (↑ or ↓) enter (α = +) or leave (α = −) the site
m, we are left with at maximum two independent Lindblad
operators (Lα

m,σ )k with k = 1, 2 constructed from operators of
the fermionic type cα

m,σ and cα
m,σ nm,σ̄ , where c+

m,σ ≡ c†m,σ and
c−

m,σ ≡ cm,σ . Moreover, we assume (γ α
m,σ )k = (γ α )k meaning

that the coupling is identical at every site and symmetric with
respect to spin.
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In simple cases, the explicit form of the Lindblad operators
can be written down using phenomenological arguments. In
the following we will discuss two such examples of cold
(T → 0) and hot (T → ∞) baths before comparing it to a
in-depth microscopic analysis.

A. Hot baths

We assume each site m is coupled independently to a
(separate) hot fermionic bath (see red line in Fig. 1). Only
single-electron excitations of the form |σ 〉 ↔ |0〉 and |↑↓〉 ↔
|σ 〉 with excitation energies ε and ε + U are considered. In
the limit T → ∞, each bath is assumed to have free and
occupied states available at every energy so that the details
of the system’s energy spectrum as well as the occupation
become dispensable. This motivates us to choose the Lindblad
operators Lα

m,σ for adding or removing an electron with spin
σ to be independent of the number nm,σ̄ of electrons with
opposite spin. This yields

L+
m,σ = c†m,σ , L−

m,σ = cm,σ , (4)

with couplings γ +
hot and γ −

hot for injecting or removing a
particle, respectively. Notice that the choice of only one of two
possible Lindblad operators for each m, σ and α is sufficient
and therefore we have dropped the index k here.

B. Cold baths

In the opposite limit, each site m is coupled to a cold
fermionic bath, formally at zero temperature. The states in
each bath are fully occupied up to the Fermi energy εF and
hence Pauli blocked. Above εF the states are empty (see blue
line in Fig. 1). The choice ε < εF < ε + U introduces a nat-
ural filter for the effective couplings between the site and the
bath: for empty sites |0〉 electrons can only enter (transferred
energy ε < εF), for doubly occupied sites |↑↓〉 the electrons
can only leave (transferred energy ε + U > εF), while for
singly occupied sites no electron transfer is possible as both
channels are blocked. Therefore, we assume the following
occupation-dependent Lindblad operators:

L+
m,σ = c†m,σ (1 − nm,σ̄ ), L−

m,σ = cm,σ nm,σ̄ , (5)

which inject an electron with rate γ +
cold if the site is empty and

remove it with rate γ −
cold if it is doubly occupied, respectively.

Again, as we deal with only one Lindblad operator per m, σ ,
and α, we drop the index k.

C. Finite-temperature baths

At finite temperature T (see gray line in Fig. 1), the
relaxation channels are neither treated all equally (as for T →
∞) nor fully blocked in one direction (as for T → 0). One
possible ansatz for a finite-temperature bath is to interpolate
between the hot and cold cases to get a single Lindblad
operator

L+
m,σ = g+(T )c†m,σ (1 − nm,σ̄ ) + h+(T )c†m,σ ,

L−
m,σ = g−(T )cm,σ nm,σ̄ + h−(T )cm,σ , (6)

with temperature-dependent (and energy-dependent) func-
tions gα (T ) and hα (T ). Demanding that gα (T → ∞) = 0 and

hα (T → 0) = 0, we ensure that the Lindblad operators give
Eqs. (4) and (5) for T → ∞ and T → 0, respectively. To
obtain the resulting Liouvillian Lphen of the phenomenolog-
ical approach, we have to insert the Lindblad operators into
Eq. (3). Note that in the case of finite temperatures it is less in-
tuitive to anticipate the proper form of the Lindblad operators
as well as to decide whether one or two Lindblad operators per
m, σ , and α should be used. This issue will be discussed in the
next section, where we start from a microscopic description of
the baths.

III. REAL-TIME DIAGRAMMATICS

In this part, we give a brief introduction to the real-time
diagrammatic approach [48,49], with the goal to give the so-
far phenomenological discussion a microscopic foundation.
We will proceed in the following way: We start from a fully
microscopic description of the system and environment, and
then employ the real-time diagrammatic technique to arrive
at a formally exact kinetic master equation for the reduced
density matrix of the system by tracing out the environment.
The diagrammatic representation is, then, an ideal starting
point for a systematic perturbation expansion in the system-
bath coupling.

The total Hamiltonian

Htot = Hs + Hb + Hc (7)

consists of three parts, with s, b, and c denoting the system,
the bath, and the coupling, respectively. The system Hs is
the Hubbard Hamiltonian of Eq. (1) with eigenvectors and
eigenenergies denoted by |χ〉 and Eχ , respectively. The en-
vironment Hb, on the other hand, consists of independent but
identical fermionic baths at every site m:

Hb =
∑
k,σ

εk,σ a†
m,k,σ

am,k,σ , (8)

where a†
m,k,σ

and am,k,σ are creation and annihilation operators
for lead electrons at site m with orbital and spin degrees
of freedom k and σ . We assume the electrons are nonin-
teracting and εk,σ is the single-particle energy. At last, the
tunnel coupling between the system and the environment is
described by

Hc =
∑

m,k,σ

tk,σ c†m,σ am,k,σ + H.c., (9)

where tk,σ is the (site-independent) tunneling amplitude for
an electron entering or leaving the site m. Note that in Hc

different sites m and m′ do not mix, which ensures a local
coupling. This coupling Hamiltonian Hc will later be treated
as a perturbation and it will turn out that only even powers
H2n

c , with n being a non-negative integer, will contribute.
To determine the time evolution of the reduced density

matrix ρχ1
χ2

(t ), we have to calculate the expectation values of
the dyads |χ2〉〈χ1|. We change to the interaction picture with
respect to Hc,

ρχ1
χ2

(t ) = tr
{
TK

[
e−i

∫
K dt ′Hc,I (t ′ )|χ2〉〈χ1|I(t )

]
ρ tot

0

}
, (10)
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and, then, formally expand in the coupling,

ρχ1
χ2

(t ) =
∞∑

n=0

∫
K

dt1

∫
K

dt2...
∫
K

dtn︸ ︷︷ ︸
t1<t2<...<tn

(−i)n

× tr
{
TK[Hc,I(t1)Hc,I(t2) . . . Hc,I(tn)|χ2〉〈χ1|I(t )]ρ tot

0

}
,

(11)

where the integrals are evaluated along the Keldysh con-
tour K, i.e., it runs first forwards in time from t0 to
t and then backwards from t to t0. The Keldysh time-
ordering operator TK orders operators such that earlier times
(with respect to the Keldysh contour) appear further to the
right. The index I indicates the interaction picture AI(t ) =
ei(Hs+Hb )(t−t0 )A(t )e−i(Hs+Hb )(t−t0 ). Moreover, we assume that
at time t0 the system and the bath are in a product state

ρ tot
0 = ρ0 ⊗ ρb

0 , whereas the bath is assumed to be in a
thermal Gibbs state ρb

0 = e−β(Hb−εFN )/Z with inverse tem-
perature β = (kBT )−1, chemical potential εF, and partition
sum Z = tr e−β(Hb−εFN ). Note that the factor 1/n! from the
Taylor expansion cancels with the n! possible permutations
of t1, t2, . . . , tn. Performing the partial trace over the bath and
making use of the fact that Hb is bilinear in the creation
and annihilation operators, we can apply Wick’s theorem to
contract the lead electron operators of Hc,I(tn′ ) with n′ =
1, . . . , n pairwise in all possible ways and replace them by
bath equilibrium distributions 〈a†

m,k,σ
am,k,σ 〉 = f+(εk,σ ) and

〈am,k,σ a†
m,k,σ

〉 = f−(εk,σ ), where we use the notation f+ ≡
f and f− ≡ 1 − f with f (ω) = [eβ(ω−εF ) + 1]−1 being the
Fermi-Dirac distribution. After employing Wick’s theorem we
can visualize Eq. (11) in the following way:

(12)

where we have evaluated the trace of the system’s degrees of
freedom over |χ ′

2〉 and inserted 1 = ∑
χ ′

1
|χ ′

1〉〈χ ′
1| right behind

ρ0 to obtain ρ
χ ′

1
χ ′

2
(t0) = 〈χ ′

1|ρ0|χ ′
2〉. In Eq. (12), the Keldysh

time increases anticlockwise from t1 at the upper right corner
to t2n at the lower right corner of the contour, whereas the
real time simply increases from right t0 to left t . The vertices
(green dots) represent the operators c†m,σ and cm,σ and the
tunneling lines (red dashed lines) diagrammatically represent
the contractions of the lead electron operators a†

m,k,σ
and am,k,σ

and they indicate that an electron is entering (pointing towards
the contour) or leaving (pointing away from the contour) the
system. The contour line itself indicates the present state of
the system. Note that we have to consider only even orders 2n
since, according to Wick’s theorem, contractions with an odd
number of lead electron operators vanish. For the same reason,
the numbers of creation and annihilation operators have to be
equal. We can formally abbreviate Eq. (12) as

ρχ1
χ2

(t ) =
∑
χ ′

1,χ
′
2

�
χ1χ

′
1

χ2χ
′
2
(t, t0)ρχ ′

1
χ ′

2
(t0)

⇔ ρ(t ) = �(t, t0)ρ(t0), (13)

where in the second line we recast the formula into an
equation with supervectors ρ(t ) and superoperators �(t, t0)
defined in Liouville space by employing the Hilbert-Schmidt
scalar product (A, B) = tr[A†B] for linear operators A and B.
Explicitly, we used the connection ρχ1

χ2
= (|χ1〉〈χ2|, ρ) and

�
χ1χ

′
1

χ2χ
′
2
= (|χ1〉〈χ2|,�|χ ′

1〉〈χ ′
2|) to arrive at an equation free

of indices. The superoperator �(t, t0) is a propagator and
describes the time evolution of the reduced density matrix

from t0 to t . It fulfills a Dyson equation of the form

�(t, t ′) = �(0)(t, t ′) +
∫ t

t ′
dt2

∫ t2

t ′
dt1�(t, t2)

× W (t2, t1)�(0)(t1, t ′), (14)

where �(0)(t ′, t ) = eL0(t−t ′ ) with L0 = −i[Hs, ·] describes the
free propagation without any tunneling and W (t2, t1) is the
irreducible self-energy, defined as the sum of all topolog-
ically inequivalent diagrams that cannot be cut vertically
into smaller diagrams. In Eq. (12), the irreducible diagrams
are highlighted with a yellow background. To calculate the
irreducible diagrams in every order 2n, which give rise to
the components of W (t2, t1), we simply have to follow the
diagrammatic rules.

(1) Draw all irreducible and topological inequivalent dia-
grams with n directed tunneling lines that connect pairwise all
2n vertices.

(2) Every vertex where the tunneling line points towards
(away from) the contour corresponds to a transition matrix
element 〈χ |c†m,σ |χ ′〉 (〈χ |cm,σ |χ ′〉) with |χ ′〉 being the state
prior to |χ〉 with respect to the Keldysh time.

(3) Every directed tunneling line pointing from t ′ to t
induces a factor �σ (ω) fα (ω)e−iω(t−t ′ )/(2π ) with α = ± for
tunneling lines aligned with (−) or against (+) the Keldysh
contour.

(4) Each free propagating segment on the Keldysh contour
with state |χ〉 between t ′ and t > t ′ implies a factor e−iEχ (t−t ′ )

on the upper and eiEχ (t−t ′ ) on the lower contour.
(5) Add a factor (−1)a+b+n with a being the number

of crossings of tunneling lines (manifestation of the Pauli
exclusion principle) and b being the number of vertices on
the lower contour.
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(6) Integrate over intermediate times (respecting the order-
ing) and sum over lead degrees of freedom (energy ω and
spin σ ).

To formulate the rules, it was beneficial—since the bath
is macroscopic—to switch from the orbital degree of free-
dom k to energy ω by replacing formally 2π

∑
k |tk,σ |2 →∫ ∞

−∞ dω �σ (ω) and thereby introducing the tunnel-coupling
strength as �σ (ω) := 2π

∑
k |tk,σ |2δ(ω − εk,σ ) which conve-

niently serves as a parameter denoting the order n in perturba-
tion theory O(�n).

Now, we have all ingredients to write down a generalized
master equation for ρ(t ). By differentiating Eq. (13) and
inserting the propagator of Eq. (14) we arrive finally at a
formally exact kinetic equation for the reduced density matrix

ρ̇(t ) = −i[Hs, ρ(t )] +
∫ t

t0

dt ′W (t − t ′)ρ(t ′), (15)

where the irreducible self-energy takes the role of a transition
matrix in Liouville space. Note that due to translational invari-
ance in time we have W (t, t ′) = W (t − t ′). So far, the equa-
tion is formally still exact if all (infinitely many) irreducible
diagrams are included. However, to arrive at a Markovian
Lindblad equation, several approximations are necessary [27],
which will be discussed in the next section.

IV. FROM DIAGRAMMATICS TO LINDBLAD

To cast the exact kinetic equation (15) into the Lindblad
form, we will employ several approximations on W (t − t ′).
Most importantly, we will only be interested in a weak
coupling between system and bath. Therefore, perturbation
theory to leading order O(�) is sufficient for our descrip-
tion and we write W (t − t ′) ≈ W (1)(t − t ′). The index (1)
denotes that only irreducible diagrams with one tunneling line
are considered [three examples are indicated with a yellow
background in Eq. (12)]. In zeroth order the density matrix
in the interaction picture is time independent, ρI(t ′) ≈ ρI(t ),
and thus we replace ρ(t ′) ≈ e−L0(t−t ′ )ρ(t ) in the integral of
Eq. (15) to obtain a time-local master equation

ρ̇(t ) = −i[Hs, ρ(t )] +
[∫ t−t0

0
dτW (1)(τ )e−L0τ

]
ρ(t ), (16)

that is consistent with a leading-order perturbation expansion.
In Eq. (16) we made use of the substitution τ = t − t ′. Note
that the assumption of a weak coupling to the environment
is only justified if the irreducible diagrams of W (1)(τ ) have
a negligible width (duration of a tunneling event) compared
to their mean distance (time between tunneling events). Only
then, first-order diagrams do not overlap in time and hence
there is no necessity of higher-order corrections. Employing

the diagrammatic rules, every first-order diagram in W (1)(τ )
gives rise to a transition rate of the form

γ
(1)
±,σ (τ ) = Re

[∫ ∞

−∞

dω

2π
�σ (ω) f±(ω)ei(ω−�E )τ

]

= �

4

{
δ(τ−0+) ∓ 2kBT

sin [(�E − εF)τ ]

sinh(πkBT τ )

}
, (17)

with a specific excitation energy �E of the system. To arrive
at the second line of Eq. (17), we assumed the wide-band limit
�σ (ω) = �σ as well as spin-independent tunneling rates �σ =
�. We find that the characteristic decay time τc of γ

(1)
±,σ (τ )

(or the width of a diagram) is given by the smaller value of
h̄/|�E−εF|min and h̄/(kBT ) (see also Ref. [50]). The mean
distance between diagrams, on the other hand, is given by
h̄/�. Hence, if either � � |�E−εF| (all excitation energies
�E are far away from the Fermi energy) or � � kBT (tem-
perature is sufficiently high) is fulfilled, the approximation of
a weak coupling is justified. Under those conditions, we can
send t0 → −∞ in the integral of Eq. (16), and by making
use of

∫ ∞
0 dτγ

(1)
±,σ (τ ) = �

f±(�E )
2 we effectively arrive at the

Markovian limit. We define the time-independent transition
matrix as WM = ∫ ∞

0 dτW (1)(τ )e−L0τ , where M denotes the
Markov assumption. (At this point the master equation is
identical to the Bloch-Redfield equation [50–52].) Note that
in this paper we consider only the real part of the diagrams
[see Eq. (17)], so that WM becomes purely real and renormal-
ization effects (see Ref. [53]) are neglected. This corresponds
to setting H̃s = Hs in Eq. (3).

At this stage, the Markovian master equation is generally
not yet in the Lindblad form and, thus, does not guarantee
positivity for all density matrices ρ(t ) evolving according to
it. To see this explicitly, as a next step, we consider in detail
the case of a single-site Hubbard Hamiltonian coupled to an
electronic reservoir. Afterwards, we discuss the generalization
to the case of M sites.

A. One site

Trying to bring WM into Lindblad form, it is beneficial to
group its components as

(WM)χ1χ
′
1

χ2χ
′
2
=

∑
α,σ

(
WM,α

σ

)χ1χ
′
1

χ2χ
′
2
, (18)

i.e., we split the processes according to the spin σ =↑,↓
and the direction of the tunneling line [either directed with
(α = −) or against (α = +) rising Keldysh time]. For those
directed against the Keldysh contour, we find in total four
irreducible diagrams:

(19)
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Here, we applied the diagrammatic rules to bring the equation
into a form (second line) that formally looks like the matrix
elements of the dissipative part of the Lindblad equation (2).
The used basis operators E+

σ,1 = c†σ (1−nσ̄ ) and E+
σ,2 = c†σ nσ̄

describe the excitation of the first (site is initially empty)
and the second (site is initially singly occupied) electron,
respectively. After a lengthy but straightforward calculation,
one can identify the first two diagrams with Lindblad terms of
the form E+

σ,μρE+†
σ,ν , the third one with ρE+†

σ,νE+
σ,μ, and the last

one with E+†
σ,νE+

σ,μρ. The coefficients γ +
μν can then be given in

the matrix form

(γ +
μν ) = �

(
f+(ε) f+(ε)+ f+(ε +U )

2
f+(ε)+ f+(ε +U )

2 f+(ε +U )

)
. (20)

Analogously, we can write down the matrix elements for
tunneling lines that are directed with (α = −) Keldysh time.
Then, we arrive at a similar expression with E−

σ,μ = E+†
σ,μ and

coefficients γ −
μν which differ from γ +

μν only by the exchange
of f+ ↔ f−. The master equation reads now

ρ̇(t ) = − i[Hs, ρ(t )] +
∑

α,σ,μ,ν

γ α
μν

[
Eα

σ,μρ(t )Eα†
σ,ν

− 1

2

{
Eα†

σ,νEα
σ,μ, ρ(t )

}]
, (21)

which has a similar form as Eq. (2). Here, however, γ α
μν is

not a positive semidefinite matrix and, thus, the positivity (to
be more precise non-negativity) of the density matrix is not
guaranteed per construction. This can easily be checked by
calculating the eigenvalues of γ α

μν :

γ α
± = �

(
fα (ε) + fα (ε +U )

2
±

√
f 2
α (ε) + f 2

α (ε +U )

2

)
,

(22)

where γ α
− � 0. This is a well-known problem [54–61]. Here,

we discuss two different approaches to deal with it.

1. Secular approximation

The usual solution to guarantee positivity is provided by
the so-called secular approximation (also termed rotating-
wave approximation) [62–64]

WS = lim
T →∞

1

2T

∫ T

−T
dte−L0tWMeL0t , (23)

where e−L0tWMeL0t transforms the superoperator WM into
the interaction picture. That approximation gets rid of all
terms oscillating in the corotating reference frame (nonsecular
terms) by performing a long-time average. In order to under-
stand the consequences of the approximation for the diagrams,
we look at specific matrix elements:

(WS)χ
′
1χ1

χ ′
2χ2

= tr
[
(|χ ′

1〉〈χ ′
2|)†WS|χ1〉〈χ2|

]
= lim

T →∞
1

2T

∫ T

−T
dt tr

[
(e−iL0t |χ ′

1〉〈χ ′
2|)†WMe−iL0t |χ1〉〈χ2|

]
= δEχ1 −Eχ2 ,Eχ ′

1
−Eχ ′

2
(WM)χ

′
1χ1

χ ′
2χ2

. (24)

Hence, translated into the diagrammatic picture, all diagrams
where the energy difference Eχ ′

1
−Eχ ′

2
of the initial states is dif-

ferent from the energy difference Eχ1−Eχ2 of the final states
are simply neglected. As a consequence, the off-diagonal
elements of the matrix γ α

μν are set to zero. This brings γ α
μν

into a diagonal and positive semidefinite form. The secular
approximation leads to the following two Lindblad operators:

Lα
σ,1 =

√
fα (ε)cα

σ (1 − nσ̄ ),

Lα
σ,2 =

√
fα (ε + U )cα

σ nσ̄ , (25)

with coupling constants γ α
k = �. Inserting the Lindblad oper-

ators into Eq. (3), we arrive at the master equation in the sec-
ular approximation ρ̇ = LSρ. Interestingly, in contrast to the
phenomenological model, we obtain two separate Lindblad
operators with k = 1, 2 for each α and σ corresponding to the
excitation of the first and the second electron, respectively.
Nonetheless, for the limiting case T → 0 and ε < εF < ε +
U , the Lindblad operators agree with the phenomenological
results of Eq. (5) since one of the two Lindblad operators is
always zero for a fixed α (the channels are open in only one
direction). We infer that the coupling parameters are γ +

cold =
γ −

cold = � and, thus, they are equal for the in- and outgoing
electrons. (Strictly speaking, this is only true for one and
the same excitation energy. However, within the wide-band
limit where � is energy independent, it is generally true.)
Inspecting also the limit of a hot bath T → ∞, the Lindblad
operators remain occupation dependent and, thus, deviate
from our model of Eq. (4). In the next section, we discuss
which is the correct T → ∞ limit. One major drawback of the
secular approximation is the discontinuity when differences
in the excitation energies reach zero [see the Kronecker delta
in Eq. (24)], meaning that the terms are kept for vanishing
differences while they are omitted for small differences. Thus,
albeit guaranteeing positivity, it is a rather drastic approx-
imation, because some diagrams involving coherences are
completely omitted. Therefore, the secular approximation can
lead in certain cases to unphysical consequences, as discussed
in Refs. [55,65].

2. Coherent approximation

In order to overcome the above-mentioned difficulties, we
propose a less radical approximation. Instead of neglecting
the arithmetic mean in the off-diagonal elements of γ α

μν , we
replace them by the geometric mean

�
fα (ε) + fα (ε +U )

2
≈ �

√
fα (ε) fα (ε +U ). (26)

Due to this replacement, the negative eigenvalue γ α
− [see

Eq. (22)] is shifted to zero, whereas the trace of γ α
μν remains

unchanged. Hence, positivity is reestablished in a minimal
invasive way. By performing a unitary transformation to di-
agonalize γ α

μν and rescaling the Lindblad operators, we arrive
at only one relevant Lindblad operator for each σ and α,

Lα
σ = Lα

σ,1 + Lα
σ,2

=
√

fα (ε)cα
σ (1 − nσ̄ ) +

√
fα (ε + U )cα

σ nσ̄ , (27)

with a rescaled γ α = �. The resulting master
equation will be abbreviated as ρ̇ = LCρ denot-
ing the coherent approximation. In a sense, this
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approximation leads to a coherent combination of the
two individual Lindblad operators from Eq. (25) that describe
separately excitations of the first (Lα

σ,1) and the second
(Lα

σ,2) electron. Put differently, whereas in the secular
approximation we deal with an incoherent sum of those two
processes, the coherent approximation generates a single
coherent excitation. Interestingly, the coherent approximation
agrees with our expectations both for a hot bath [see Eq. (4)]
and for a cold bath [see Eq. (5)]. For the former case,
we can infer that the coupling parameters are γ α

hot = �/2,
again independent of the direction α = ±. Moreover, it
turns out that the finite-temperature Lindblad operator
from Eq. (27) can indeed be rewritten as an interpolation
between the hot and cold limits and by comparison with
Eq. (6) we find g±(T ) = ±[

√
f±(ε) − √

f±(ε + U )] as well
as h+(T ) = √

f+(ε + U ) and h−(T ) = √
f−(ε) satisfying

gα (T → ∞) = 0 and hα (T → 0) = 0. Thus, for one site
M = 1, the Liouvillians of the phenomenological approach
and the coherent approximation are identical, Lphen = LC.
However, since the approximation of Eq. (26) is a rather ad
hoc replacement, we check, in the next step, whether the
coherent approximation is physical and leads to better results
than the secular approximation.

Below, we compare three limiting cases, where we com-
pare the coherent with the secular approximation.

(1) In the limit T → 0, the coherent approximation and
the secular approximation coincide, LC = LS, because the
off-diagonal elements γ α

12 = γ α
21 = �

√
fα (ε) fα (ε +U ) van-

ish. Thus, for small temperatures we expect the coher-
ent approximation to be at least as good as the secular
approximation.

(2) In the limit T → ∞, the function γ (1)
α,σ (τ ) becomes

delta peaked in τ so that the width of the first-order dia-
grams becomes zero. Then, we expect the Markovian as-
sumption WM to be exact. The arithmetic and the geo-
metric mean give rise to identical off-diagonal elements
γ α

12 = γ α
21 = �/2 meaning Eq. (26) is an identity and, hence,

the coherent approximation becomes also exact. In contrast,
the secular approximation sets the off-diagonal elements to
zero, γ α

12 = γ α
21 = 0. Thus, for high temperatures, the co-

herent approximation is evidently better than the secular
approximation.

(3) When differences in the excitation energies are small
(to be specific, when ε + U − ε = U is small), we find that
the coherent approximation of Eq. (26) is an equality up to
the first order in U . Hence, for vanishing interaction U = 0,
Eq. (26) again is exact and the off-diagonal elements remain
unchanged γ α

12 = γ α
21 = � fα (ε) (as it would be in the secular

limit for U = 0). But, now, instead of an abrupt change (as
in the secular approximation), the off-diagonal elements are
also kept for small values of U , leading to a continuous
transition. In contrast, for strong interactions U � kBT in the
particle-hole symmetric case (where the excitation energies
ε and ε + U are centered symmetrically around the Fermi
energy εF), the geometric mean �

√
fα (ε) fα (ε +U ) vanishes

exponentially with U . Thus, in the limit U → ∞ the coherent
and the secular approximation coincide.

To conclude, we claim that the coherent approximation of
Eq. (26) is physically justified and less radical than the secular
approximation. Most importantly, it also guarantees positivity.

3. Modified rules

Instead of performing the coherent approximation in the
way we presented, we can also embed the modifications on
the level of the diagrammatic rules from Eq. (19). There,
every real part of a diagram contributes to the transition rate
with a term ∼ fα (�E ) where the energy difference �E is
always determined by the states directly before and after the
right vertex (right green dot). Now, by replacing fα (�E ) →√

fα (�E ) fα (�E ′), where �E ′ is the energy difference at the
left vertex (left green dot), we arrive in an alternative way at
the coherent approximation. Doing so, we can conveniently
generalize the approximation to other systems. Note that our
coherent approximation is in accordance with a phenomeno-
logical approach proposed in Ref. [66] which was discussed
further in Ref. [67].

B. M sites

It turns out that for a single-site Hubbard model differences
between the secular and coherent approximation cannot be
observed, because they differ only in transitions between
coherences of the form |0〉〈σ | ↔ |σ̄ 〉〈↑ ↓|. Since those co-
herences are between states of different fermion parity, they
are irrelevant for any measurable quantity (see the fermion-
parity superselection postulate in Refs. [68,69]). However,
for a Hubbard model with two sites, respective transitions
|0,↑↓〉〈σ, σ̄ | ↔ |σ̄ ,↑↓〉〈↑↓, σ̄ | now become relevant. This
motivates us to look closer at the dynamics of a Hubbard
dimer (see Sec. V). To do so, we have to extend the formalism
to larger systems with M sites.

1. Nonlocal Lindblad operators

We discuss both the secular and coherent approximation
for an arbitrary number of sites M. Note that for M � 2
the tunneling amplitude J between the sites complicates the
spectrum of excitation energies �E .

a. Secular approximation. By using Eq. (24) we can apply
the secular approximation straightforwardly to larger systems,
again, by discarding all those diagrams where the energy dif-
ference of the initial states differs from the energy difference
of the final states. Then we arrive at

L+
m,σ (�E ) =

∑
χ,χ ′

δ�E ,Eχ −Eχ ′
√

f+(Eχ−Eχ ′ )〈χ |c†m,σ |χ ′〉|χ〉〈χ ′|,

L−
m,σ (�E ) =

∑
χ,χ ′

δ�E ,Eχ ′ −Eχ

√
f−(Eχ ′−Eχ )〈χ |cm,σ |χ ′〉|χ〉〈χ ′|,

(28)

which describe separate transitions for each (positive)
single-electron excitation energy �E . For M = 1 we arrive
at the Lindblad operators of Eq. (25). Again, we abbreviate
the corresponding Liouvillian with LS where S is short for the
secular approximation.

b. Coherent approximation. For the coherent approxima-
tion, on the other hand, a procedure as in Sec. IV A 2 becomes
unhandy. However, a straightforward extension to larger sys-
tems can be performed by using the modified diagrammatic
rules of Sec. IV A 3. Then, we arrive at the following Lindblad
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operators:

L+
m,σ =

∑
χ,χ ′

√
f+(Eχ−Eχ ′ )〈χ |c†m,σ |χ ′〉|χ〉〈χ ′|,

L−
m,σ =

∑
χ,χ ′

√
f−(Eχ ′−Eχ )〈χ |cm,σ |χ ′〉|χ〉〈χ ′|, (29)

which reduce for a single site to the known results of the
coherent approximation from Eq. (27). Again, as in Eq. (27),
we find that the Lindblad operators are a coherent sum of those
found in the secular approximation, Lα

m,σ = ∑
�E Lα

m,σ (�E ).
We will denote the corresponding Liouvillian, as before, LC

where C is short for the coherent approximation.
Interestingly, although we model local baths only, we find

that for LS and LC with M � 2 the Lindblad operators include
nonlocal transitions in space that cause changes at sites m′ 
=
m. Formally, this nonlocality originates in the integration over
the past time in Eq. (17), which in the Markov assumption
t0 → −∞ leads to nonlocal transitions even for early times
t − t0 � τc. Hence, the Lindblad operators Lα

m,σ as well as
Lα

m,σ (�E ) describe effective transitions where not only an
electron at site m with spin σ enters or leaves, but at the
same time J-induced intersite tunneling events can happen.
Consequently, the Lindblad operators take for larger systems
a more involved form.

2. Local Lindblad operators

Next, we want to discuss a less sophisticated but inherently
local approach to model the coupling to the baths. Its main
benefit is its simplicity and the ability to directly apply the
Lindblad operators we have obtained for a single site. An
obvious (but not fully correct) way to describe a situation
where every site is coupled to a local bath is by simply
promoting the Lindblad operators for one site with a site
index Lα

σ → Lα
m,σ . Then, all dissipative effects are assumed

to be independent of the inter-site tunneling amplitude J .
We will call this assumption the local approximation and
denote the respective Liouvillians as LS

loc and LC
loc for the

secular approximation (25) and the coherent approximation
(27), respectively. In contrast to the full Liouvillians LS and
LC, here, the Lindblad operators induce only local transitions.
Interestingly, we find also for multiple sites M � 2 that the
phenomenological approach [see Eqs. (4)–(6)] is identical
to the local coherent approximation, Lphen = LC

loc. Note that
we may obtain the local approximations LS

loc and LC
loc by

setting J = 0 in the Lindblad operators of Eqs. (28) and (29),
respectively.

The local approximation seems reasonable as long as we
are in the limit of a weak hopping J ∼ � such that the cor-
rections to the excitation energies ε and ε + U are negligible
within the leading-order perturbation theory in �. However,
this argument may not hold for times t � �−1 since small
errors may accumulate over time. Moreover, in Ref. [70], it is
stated that the local approach may even lead to a violation of
the second law of thermodynamics.

Interestingly, for the coherent approximation, we find for
a hot bath T → ∞ that local and nonlocal Liouvillians are
identical, LC = LC

loc, and give exact results [since the replace-
ment fα (�E ) → √

fα (�E ) fα (�E ′) from Sec. IV A 3 be-

comes an identity]. Hence, for sufficiently high temperatures
kBT � J,U the nonlocal effects are negligible and the local
coherent approximation LC

loc should perform very well. For
smaller temperatures, however, we have to be careful with the
local approximation and study explicitly the consequences of
nonlocal transitions.

V. HUBBARD DIMER

Below, we will be interested in a Hubbard dimer, which is
the smallest possible system where all energy scales, i.e., the
intersite tunneling amplitude J , the on-site Coulomb interac-
tion U , the system-bath tunnel-coupling strength �, and the
temperature T of the baths, appear. The Hamiltonian takes the
form Hs = HJ + HU + Hε with HJ = −J

∑
σ c†1,σ c2,σ + H.c.

for tunneling between the two sites, HU = ∑
m Unm,↓nm,↑ for

the on-site Coulomb interaction and Hε = ε
∑

m,σ nm,σ for the
single-electron energies, as introduced in Eq. (1). The system
can be experimentally realized as a double quantum dot
coupled to (separate) electronic leads [71–73]. First, we dis-
cuss the dynamics of simple observables as the total particle
number and the total spin and discuss the characteristic decay.
Then, we focus on the limit of hot baths, T → ∞, which
is suited very well to estimate the validity of both the local
and nonlocal secular approximations LS

loc and LS, because for
hot baths the coherent approximations LC

loc = LC give exact
results. Next, we elaborate the limit of cold baths, T → 0,
where both local approximations yield identical results LS

loc =
LC

loc. We compare the local as well as the full Liouvillians LC

and LS with a full solution to the time-dependent equation
(16). At last, we mention shortly the case of small but finite
temperature.

A. Dynamics of simple observables

To study time-dependent observables O(t ), it is useful to
work in the Heisenberg picture by employing the superadjoint
Lindblad equation

Ȯ(t ) =L†O = i [Hs, O]

+ �
∑

m,α,σ,k

[
Lα†

m,σ,k O Lα
m,σ,k − 1

2

{
Lα†

m,σ,k Lα
m,σ,k, O

}]
,

(30)

with L† being the adjoint Liouvillian of either one of the
four possible LS,LC,LS

loc, or LC
loc. At first, we discuss the

dynamics of basic observables as the z component of the to-
tal spin Sz(t ) = ∑

m(nm,↑ − nm,↓)/2 and the total occupation
number N (t ) = ∑

m,σ nm,σ . For those observables, we find

(LS
loc − LC

loc)
†
O(t ) = 0 and (LS − LC)

†
O(t ) = 0 with either

O(t ) = Sz(t ) or N (t ), meaning secular and coherent approx-
imation give the same results. For the local limit LS

loc and
LC

loc the superadjoint Lindblad Eq. (30) simplifies to a closed
ordinary differential equation and we find (in agreement with
Ref. [74]) for the total spin Sz

Ṡz(t ) = λSz Sz(t ), (31)
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TABLE I. Comparison between the local and nonlocal ap-
proaches with regard to the decay rates of the particle number N and
the spin Sz for hot (T → ∞) and cold (T → 0) baths.

λN λSz

Local T → ∞ −� −�

Local T → 0 −2 � 0
Nonlocal T → ∞ −� − �

Nonlocal T → 0 −2�(1 ± δ) −2�(1 ± δ)

with λSz = −�[1 + f (ε + U ) − f (ε)], and for the total occu-
pation number

Ṅ (t ) = λN [N (t ) − N (∞)], (32)

where λN = −�[1 − f (ε + U ) + f (ε)] and N (∞) =
−2ns f (ε)�/λN with ns being the number of sites. These
results are also valid for an arbitrary number of sites.
The equations have exponentially decaying solutions,
O(t ) = O(∞) + [O(0) − O(∞)] eλ t , with the exponents
given by λSz and λN , respectively, and the asymptotic values
O(∞) being zero for the spin and N (∞) for the occupation
number.

For the nonlocal methods LS and LC the decay of N and
Sz becomes more involved, and we do not obtain a simple
closed differential equation. However, since the only possible
relaxation rates that can appear are the eigenvalues λ j of the
respective Liouvillian L, it is useful to perform a spectral
decomposition of the expectation values

〈O〉(t ) = (O, ρ(t )) =
∑

j

eλ j t (O, r j )(l j, ρ0), (33)

with left and right eigenvectors of L defined via Lr j = λ jr j

and L†l j = λ j l j . They are orthogonal, (li, r j ) = δi j , and fulfill
the completeness relation

∑
j r j l

†
j = 1. Doing so, we find

analytical results for the nonlocal methods in the limiting
cases T → ∞ and T → 0 with ε < εF < ε + U . For com-
parison we summarize the relevant decay constants with
the smallest nonzero absolute values in Table I, where δ =
J/

√
(4J )2 + U 2. It is interesting to observe that according

to the local approaches the relaxation of the total spin Sz

becomes slower with decreasing bath temperature until a
total freeze at T → 0 while the relaxation of the occupation
number N becomes faster at lower temperatures. The latter
is an interaction effect and can be explained by the increasing
asymmetry between the bath occupations at different energies,
f (ε) and f (ε + U ), which at lower temperatures increase the
couplings for the unidirectional processes double occupation
→ single occupation and empty site → single occupation,
leading to a faster relaxation of N to the one-electron-per-site
equilibrium. On the other hand, for the spin relaxation a
multiple exchange of electrons between the sites and the baths
is needed since in leading order in � a direct spin relaxation
is suppressed within the local approach [75]. So when the
electron transfer saturates quickly (for low temperatures) the
spin decay proceeds very slowly.

By employing the full nonlocal Liouvillians LS or LC we
find for the limit of hot baths T → ∞ identical results, but for
cold baths T → 0 there are strong deviations, namely, the spin
Sz is actually not conserved but decays in a more complicated

fashion with characteristic decay constants ∝ − 2�(1 ± δ).
This decay originates from effective processes where, e.g., the
electron with spin σ tunnels from one site m to a neighboring
site m′ (∝J) and at the same time an electron with opposite
spin σ̄ enters from the bath at site m (∝�) resulting in a
mechanism for direct spin relaxation. Hence, for the dynamics
of Sz, we find a drastic discrepancy where nonlocal transitions
become very important for small temperatures. In contrast, for
N , the discrepancy is rather a small correction in the decay
rate if the intersite tunneling amplitude J is small compared
with U . In consequence, when discussing small temperatures,
a comparison with models beyond the local approximation
becomes necessary.

B. Hot baths

Remember that for hot baths (formally at infinite tempera-
ture) the local coherent approximation LC

loc is exact (and equal
to LC) and hence we can determine how far off the local and
nonlocal secular approximation LS

loc and LS is, respectively.
In all cases, the stationary state of the system becomes fully
mixed,

ρst = 1

16

∑
χ1,χ2∈{0,↑,↓,↑↓}

|χ1, χ2〉〈χ1, χ2|, (34)

containing all possible occupations |χ1, χ2〉 at both sites
(first and second entry) coming with equal probabili-
ties. Hence, the stationary state agrees with the Gibbs
state ρG = e−β(Hs−εFN )/Z for β → 0. Recalling Sec. IV A,
we find that differences between the local secular (LS

loc)
and the local coherent (LC

loc) approximation scale with
∝√

fα (ε) fα (ε + U ), which for the particle-hole symmetric
case fα (ε + U ) = 1 − fα (ε) (shown in Fig. 1) can be rewrit-
ten as ∝[2 cosh(βU/4)]−1. This expression diminishes expo-
nentially for high values of βU � 1. In contrast, for high tem-
peratures (small β) and moderate interactions U , we should
observe differences in the dynamics. In Fig. 2, we show the
time-dependent expectation value of �N = n1 − n2 with oc-
cupation number operators n1 and n2 as a function of time for
both the local and the nonlocal secular approximation against
the exact coherent approximation. The system is initially
prepared in the state ρ0 = |↑↓, 0〉〈↑↓, 0| and interacts with a
hot bath (T →∞) at each site. Despite a qualitative agreement,
we can see some differences in the time evolution. The
differences originate in those processes involving the tran-
sitions |↑↓, 0〉〈↑↓, 0|→|↑↓, 0〉〈σ̄ , σ |→|↑↓, σ̄ 〉〈σ̄ ,↑↓|. The
first step is due to a coherent evolution generated by HJ

and the second step corresponds to an electron entering
from the bath at site 2 with spin σ̄ . While those pro-
cesses are completely neglected in the secular approxi-
mation, which does not couple coherences with different
energies [see Eq. (24)], the coherent approximation takes
them correctly into account. Furthermore, if we look
at the characteristic energy decay E = 〈Hs〉 [and subtract
the stationary value E (∞) = 2ε], we find different relax-
ation rates for the respective approximations. For the lo-
cal secular approximation, the energy relaxation goes sim-
ply with −2�, whereas for the coherent approximation we
find a decay with −2� < ReλE < −�, for instance, ReλE ≈
−1.15� for U = 5�, J = 2�, nearly half as slow. The value
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can be determined analytically as

λE = −2� + 1√
2

√
�2 − U 2 − (4J )2+

√
[�2 − U 2 − (4J )2]2 + 2(4J )2�2, (35)

which has a nonvanishing oscillatory part ImλE as well as
a decaying part ReλE that gives −2� in the limit of either
U → ∞ or J → 0 and −� for U, J � �. Surprisingly, the
nonlocal secular approximation LS gives the same real part
of the relaxation rate λE , but misses the imaginary part and,
thus, does not describe the oscillatory part at all [see Fig. 2(c)].
To conclude, for the Hubbard dimer, there are qualitative
differences in the relaxation dynamics, because the secular
approximation, indeed, misses systematically some relevant
processes.

(a)

(b)

(c)

2.0

1.0

0.0

0.0 1.0 2.0 3.0

0.0

0.0

1.0 2.0 3.0

0.0 1.0 2.0 3.0

FIG. 2. (a) Particle asymmetry 〈�N〉 and (b) energy E = 〈Hs〉
as functions of time starting from an initial state ρ0 = |↑, 0〉〈↑, 0|.
We compare the local secular approximation LS

loc (blue line) and
the nonlocal secular LS approximation (green line) with the exact
results given by the local coherent approximation LC

loc = LC (orange
line). In (c) we resolve the differences EC − ES between the nonlocal
secular approximation LS and the exact results LC. The parameters
are U = 5�, J = 2�, and T → ∞.

C. Cold baths

We consider the case of cold baths (formally at zero
temperature) with ε < εF < ε + U where the local coherent
and the local secular approximations coincide, LS

loc = LC
loc,

and we explicitly discuss the importance of nonlocal effects
that are included in LS and LC.

The stationary state ρst depends strongly on the inclusion of
nonlocal processes. In the local limit, we find that ρst belongs
to a degenerate subspace spanned by the spin triplet states

|T−〉 =|↓,↓〉, |T+〉 =|↑,↑〉, |T0〉 = 1√
2

(|↓,↑〉 + |↑,↓〉),

(36)

which fulfill HJ |Tl〉 = HU |Tl〉 = 0 and S2|Tl〉 = 2|Tl〉
with l ∈ {−, 0,+}. The total spin is defined as S =∑

m,σ,σ ′ c†m,σ τσσ ′cm,σ ′/2 with Pauli matrices τ = (τx, τy, τz )
such that S(S + 1) are the eigenvalues of S2 with
S = 1 for the triplets. However, the eigenstate of the
grand-canonical Hamiltonian Hs − εFN with the lowest
eigenvalue is not a triplet state, but rather a modified
singlet state of the form |S̃〉 = (|S〉 + κ|DH〉)/

√
1 + κ2

with |S〉 = 1√
2
(|↓,↑〉 − |↑,↓〉) being the actual singlet

and |DH〉 = (|↑ ↓, 0〉 + |0,↑ ↓〉)/
√

2 being a symmetric
superposition of doublon-holon states. The coefficient is
given by κ = (4J/U )/[1 +

√
1 + (4J/U )2] and diminishes

for small ratios J/U . Apparently, it is not possible to arrive at
the lowest-energy state |S̃〉. The reason is that within the local
approach a double occupation is unstable and must always
decay. Consequently, |S̃〉 cannot become stationary.

Employing the Liouvillians LS and LC, on the other hand,
we find that if nonlocal transitions are included the subspace
for the stationary state ρst is extended by exactly |S̃〉. The
nonlocal transitions are such that, now, also a double occupa-
tion of one site can be energetically favorable. Only then, the
findings are consistent with the Gibbs state. However, note
that in the limit T → 0 the stationary state is actually not
unique, because the system can be in any linear combination
of the four states |S〉 and |Tl〉 as well as in a mixture of
them. Hence, in Liouville space we have a 16-dimensional
degenerate subspace to the eigenvalue Reλ0 = 0 of LS (or
LC). Interestingly, if a certain initial state ρ0 is given, the
stationary solution is completely determined by 16 conserved
quantities of the system, which are given by the left eigen-
vectors with eigenvalue Reλ0 = 0 of the Liouvillian [34]. In
contrast, for finite temperatures there is only one conserved
quantity, namely, probability, and thereby only one unique
stationary state.

Next, we discuss two specific examples of a quantum
quench to highlight the main qualitative differences in the dy-
namics between the local (LS

loc = LC
loc) and nonlocal (LS and

LC) methods. Furthermore, we consider also the full solution
to the raw equation (16), where the Markovian limit t0 → ∞
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FIG. 3. (a) Particle asymmetry 〈�N〉 and (b) spin asymmetry
〈�Sz〉 as functions of time starting from an initial state ρ0 =
|↑, 0〉〈↑, 0|. We compare the local methods LS

loc = LC
loc (blue line)

with the nonlocal secular LS (green line) and the nonlocal coherent
approximation LC (black line). Moreover, we show the full solution
to the time-dependent problem from Eq. (16) (orange line). The
parameters are U = 10�, J = 2�, and T → 0.

has not been applied yet and the transition rates from Eq. (17)
still depend on the time that has elapsed since t0 (again we
consider only the real part of the diagrams). Comparing with
this brute force approach, we can better estimate the validity
of the different approximations.

Example 1. The system is initially prepared in the state
where a spin-↑ electron occupies one site ρ0 = |↑, 0〉〈↑, 0|
(with U = 10 �, J = 2 �). Such a state can be experimentally
prepared by means of a magnetic field that favors the spin-↑
direction and by a specific tuning of the excitation energies
via gate voltages. By quickly resetting the parameters, one
can study the quench dynamics. Once in contact with the
cold baths, the system relaxes quickly to a state in which
each site is occupied by exactly one electron. We find that the
number asymmetry �N = n1 − n2 decays at a rate ≈ −2 �

for U � �, J , thus leading to a quick end of the coherent
oscillations of particles [see Fig. 3(a)]. For �N , all methods
agree very well with each other. For the total spin z component
Sz, we found that in the local approaches we have Ṡz = 0,
whereas when nonlocal transitions are considered we have
Ṡz 
= 0. For the spin asymmetry between both sites �Sz =
Sz,1 − Sz,2, the differences in the dynamics are even more
intriguing [see Fig. 3(b)]. For short times, the decay is fast
with a rate −2�, which is similar for all approaches. However,

for longer times, we observe either slow decaying oscillations
(blue line) predicted by the local approaches, fast decaying
oscillations (green line) predicted by the nonlocal secular
approximation, or no decay at all (black and orange line)
predicted by the nonlocal coherent approximation and the full
method from Eq. (16), respectively. In the local approaches,
the slow decay of �Sz is determined by the rate ≈−8J2�/U 2

for U � �, J . This slow relaxation of spin oscillations orig-
inates in the decay of coherences of the form |S〉〈Tl |. It turns
out that the singlet state |S〉 has no direct decay possibility
in the local approach, as it can only decay via processes
involving a prior coherent evolution to the double occupation
of one site (suppressed by U ) and a successive exchange
of electrons with the baths, leading slowly to a triplet state,
a dead end of the evolution. In contrast, for the nonlocal
approaches we have either a fast decay with ≈−2� for the
secular approximation LS (green line) or no decay at all for
the coherent approximation LC (black line). The latter case is
indeed possible, since the coherences |Tl〉〈S̃| that lead to spin
oscillations (but no charge oscillations) fulfill LC|Tl〉〈S̃| =
−i[

√
(4J )2 +U 2 −U ]/2|Tl〉〈S̃|. Thus, they are eigenvectors

of LC to an eigenvalue with zero real part (no decay) but
finite imaginary part (coherent oscillation). In other words,
the spin oscillations happen in a decoherence-free subspace
of dark states [76,77]. To judge which method gives the
most accurate results, we compare with the full method from
Eq. (16) (orange line). It also shows forever-lasting coherent
spin oscillations and apart from small deviations it agrees very
well with the coherent approximation LC.

Example 2. The system is initially prepared in a singlet
state ρ0 = |S〉〈S| (with U = 10 �, J = 2 �). In Figs. 4(a) and
4(b), we show the expectation values of the total spin squared
S2 as well as the fermion parity operator P = (−1)N as
functions of time with the initial values S(S + 1) = 0 and
(−1)N = 1, respectively. For the local methods (blue line),
the spin squared S2 increases gradually from the initial value
to the one of the triplet states with S(S + 1) = 2. Again, the
relaxation proceeds slowly, because the singlet can only decay
via a prior coherent oscillation to |DH〉 which is strongly
suppressed for U � J . The respective decay constant is now
≈−12J2�/U 2 for U � �, J . The nonlocal approaches (green
line for LS and black line for LC) give identical results.
The spin squared saturates quickly with −2�(1 − δ) to a
final value that is much lower than the value expected for
triplet states. The reason is that the singlet state |S〉 has a big
overlap 〈S̃|S̃〉 with the additional stationary state |S̃〉 that is
missing in the local approach. Thus, triplet states contribute
only partially to the stationary value and since |S̃〉 has zero
spin the final value of S2 is much lower. Interestingly, we
find for the full model (orange line) that for small times the
curve agrees more with the local approach while for larger
times, albeit the presence of oscillations, the curve behaves
more similar to the nonlocal methods. Consequently, due
to the fast increase in the beginning the stationary value
must lie higher. By considering the integrated relaxation
rates

∫ t − t0
0 dτγ±(τ ) from Eq. (17), indeed, we find that for

short times t − t0 < h̄/|�E − εF|max they describe only local
transitions, which agrees with physical intuition, however,
imitating a situation where the dimer is virtually coupled to
hot baths (instead of cold ones). Only after a time t − t0 >
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(a)

(b)
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FIG. 4. (a) Spin squared S2 and (b) parity P = (−1)N as func-
tions of time starting from an initial state ρ0 = |S〉〈S|. We compare
the local methods LS

loc = LC
loc (blue line) with the nonlocal secular

LS (green line) and the nonlocal coherent approximation LC (black
line). The latter two methods (green and black line) agree for the
shown observables. Moreover, we show the full solution to the time-
dependent problem from Eq. (16) (orange line). The parameters are
U = 10�, J = 2�, and T → 0.

τc = h̄/|�E − εF|min the rates saturate and effective nonlocal
transitions are allowed, which results in a better agreement
with the nonlocal methods LS and LC. Considering the time
evolution of the parity of the state, we find for all methods
roughly similar trends. Starting from an initial value +1, in
all cases the singlet state |S〉 is not stationary and due to
intermediate transitions to odd-parity states with one or three
electrons the parity first decreases towards −1 and then finally
reaches the stationary value +1 again. As before, for the
local methods (green line) the parity reaches asymptotically
+1 with the rate ≈−12J2�/U 2 for U � �, J . The nonlocal
approaches (green line for LS and black line for LC) give again
identical results, and the asymptotic value +1 is reached much
quicker with rate −2�(1 − δ). Furthermore, for the same
reasoning as above, the full model (orange line) agrees for
short times better with the local approach, and for larger times
better with the nonlocal approach. Surprisingly, we see that in
the full model the parity takes forbidden values P > 1. This
is connected to the violation of positivity. Although we find
that tr ρ = 1 is fulfilled for all times t , single eigenvalues can
become smaller than zero, because positivity is not ensured in
the raw model of Eq. (16).

FIG. 5. Spin asymmetry �Sz as a function of time starting from
an initial state ρ0 = |↑, 0〉〈↑, 0|. We compare the results of the
coherent approximation LC for zero temperature (black line) with
finite temperatures kBT = �/2 (orange line) and kBT = � (green
line). The spin oscillations decay on a rather long time scale. The
remaining parameters are U = 10� and J = 2�.

To conclude, for cold baths, the different approximations
lead to significant differences in the results. Nonlocal transi-
tions in space play an important role for cold baths and, thus,
the local approximations LS

loc and LC
loc fail. The full model

agrees best with the nonlocal coherent approximation LC.
There, differences arise mostly for very short times, where the
full model behaves essentially local.

D. Small but finite temperature

By studying small but finite temperatures, T > 0, we find
that for all methods the T = 0 result is continuously reached
for T → 0. In Fig. 5, we show as an example �Sz for the
coherent approximation LC. There we found that for T → 0
(black line) coherent spin oscillations persist for all times. By
gradually turning on the temperature we find that even up to
kBT ≈ �/2 the coherent oscillations survive on a rather long
time scale. An appreciable decay can first be seen by choos-
ing kBT ≈ �. Hence, the spin oscillations are robust against
temperature and we find an ultraslow relaxation with an ex-
ponentially suppressed decay constant ∼� exp[−U/(2kBT )]
for U � kBT which gives zero for either U → ∞ or T → 0.
Here, we assumed the particle-hole symmetric case ε − εF =
−U/2 and hence U/2 is the approximate distance of the
excitation energies to the Fermi level.

VI. CONCLUSIONS

We have studied relaxation dynamics for interacting elec-
trons in the Hubbard model when each Hubbard site is indi-
vidually coupled to a thermal bath of electrons. To describe
the coupling between system and bath, we used, on the one
hand, a heuristic approach where the anticipated effects of the
bath are taken into account in the form of ad hoc Lindblad op-
erators that are chosen by pure phenomenological arguments.
For a microscopic treatment, on the other hand, we employed
the diagrammatic real-time technique and derived from it a
set of Lindblad operators by assuming the Markov limit in
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leading-order perturbation theory in the system-bath coupling.
For one site, we explicitly identified the irreducible diagrams
with corresponding terms in the Lindblad equation. A subtle
but important step was to solve the problem of positivity
violation of the reduced density matrix which is well known
in this context. However, instead of employing the commonly
used secular approximation, which completely neglects cer-
tain types of diagrams, we proposed an alternative and less
drastic method named the coherent approximation. It does not
neglect any diagrams but minimally modifies them to restore
positivity. The coherent approximation becomes exact in the
limit T → ∞ and agrees with the secular approximation for
T = 0, thus being an improvement to the latter. Furthermore,
we extended the formalism to multiple sites and presented
how to obtain both approximations from the diagrams. We
found that within the coherent approximation each process
for changing particle number and spin is modeled by one
Lindblad operator that combines all the available energy
channels coherently, while the secular approximation treats
them incoherently with one Lindblad operator each. Interest-
ingly, although the couplings to the baths were assumed to
be local, the obtained Lindblad operators effectively include
nonlocal transitions. Hence, by assuming local Lindblad op-
erators (as we did in the phenomenological approach), we
made an implicit assumption (the local approximation) which
turned out to have radical consequences on the dynamics
in the small temperature case. Interestingly, the origins of
those nonlocal transitions in space are the time-integrated
diagrams, which only on the time scale of the characteristic
decay time τc describe local transitions. Thus, we find that
for very short times the induced transitions are essentially

local, while for longer times they include also nonlocal
excitations.

For illustration, we explicitly compared the nonlocal and
local methods for both the secular and coherent approximation
by studying the relaxation dynamics of a Hubbard dimer. For
hot baths, T → ∞, nonlocal transitions become negligible
and the local coherent approximation (which then equals
the nonlocal one) becomes exact. In contrast, the secular
approximations (either local or nonlocal) do miss some qual-
itative features in the dynamics. For cold baths, T → 0, we
compared the proposed methods for justification with the fully
time-dependent first-order approach, too. We found that, for
early times, the evolution is essentially local. Only for later
times, the dissipative dynamics learns about the presence of
nonlocal correlations in the dimer and nonlocal effects begin
to matter strongly. In fact, the local approximations do not
even lead to a stationary state that is consistent with the Gibbs
state. Furthermore, we found that coherent spin oscillations
in the decoherence-free subspace spanned by the triplet and
singletlike states are only well described using the coherent
approximation.

To conclude, for small temperatures, nonlocal Lindblad
operators are crucial, although the physical couplings to the
baths are entirely local. Moreover, the nonlocal coherent
approximation turns out to be generally the most accurate.
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